因光缆接头盒浸水而导致系统传输质量的下降,是光缆传输网中的常见故障,也是一直困扰着光缆运营、维护的难题。水,尤其是不洁的地下水,进入光缆接头盒后,在短期内会使光纤的涂覆层脱落,机械强度降低,如长期得不到处理的话,所浸入的水就会在光缆的金属护层及金属加强芯间发生电离,电解为H2分子和0H-离子。
其中,H2分子易于产生红外吸收而造成光纤内光信号的衰减; 0H-离子则易于引起光纤的化学衰减,改变光纤的物理结构。因此如何预防和发现光缆接头盒内的浸水,并对光缆接头盒密封性能实施实时监测,成了各通信部门关注的焦点。
现阶段对直埋光缆接头盒进水检测主要有以下两种方法:
1、直埋光缆接头盒内都有金属监测线。维护人员通过测试金属监测线的绝缘电阻值,来判断光缆接头盒是否受潮浸水。测试值为500MΩ以上视为合格;当绝缘电阻值降到几十千欧时,可确认该光缆接头盒已浸水受潮。
2、在光缆线路中存在备用光纤的情况下,可以使用进水监测器来检测。首先找出接头盒内备用光纤,将监测器主体盒从监测器外框中滑出。因监测器主体盒与压纤盖为上、下两半卡榫式连接,所以应用时只需把备用光纤卡入监测器主体盒两侧的穿纤孔,再盖上透明压纤盖;然后将已夹持监测光纤的监测器主体盒套入监测器外框;确认接头盒内监测光纤没有弧度较小的弯曲后,利用监测器外框的双而粘胶,即可将监测器粘贴于接头盒。
当安装有进水监测器的光缆接头盒进水后,进水监测器的动作过程大致为:首先光缆阻水纱主动吸附接头盒内的水同时发生体积膨胀,从而为红色顶纤柱向上移动提供动力源;受光缆阻水纱膨胀力的作用,凸形红色顶纤柱推挤监测光纤向凹形压纤盖方向移动并最终与压纤盖互相吻合,这时夹持在顶纤柱与压纤盖间的监测光纤就会形成一个半径等同于吻合槽道大小的物理弯曲,同时产生附加弯曲损耗,而这个弯曲损耗维护人员是可利用光时域反射仪(OTDR) 在光端站测试出来的。
其中,H2分子易于产生红外吸收而造成光纤内光信号的衰减; 0H-离子则易于引起光纤的化学衰减,改变光纤的物理结构。因此如何预防和发现光缆接头盒内的浸水,并对光缆接头盒密封性能实施实时监测,成了各通信部门关注的焦点。
现阶段对直埋光缆接头盒进水检测主要有以下两种方法:
1、直埋光缆接头盒内都有金属监测线。维护人员通过测试金属监测线的绝缘电阻值,来判断光缆接头盒是否受潮浸水。测试值为500MΩ以上视为合格;当绝缘电阻值降到几十千欧时,可确认该光缆接头盒已浸水受潮。
2、在光缆线路中存在备用光纤的情况下,可以使用进水监测器来检测。首先找出接头盒内备用光纤,将监测器主体盒从监测器外框中滑出。因监测器主体盒与压纤盖为上、下两半卡榫式连接,所以应用时只需把备用光纤卡入监测器主体盒两侧的穿纤孔,再盖上透明压纤盖;然后将已夹持监测光纤的监测器主体盒套入监测器外框;确认接头盒内监测光纤没有弧度较小的弯曲后,利用监测器外框的双而粘胶,即可将监测器粘贴于接头盒。
当安装有进水监测器的光缆接头盒进水后,进水监测器的动作过程大致为:首先光缆阻水纱主动吸附接头盒内的水同时发生体积膨胀,从而为红色顶纤柱向上移动提供动力源;受光缆阻水纱膨胀力的作用,凸形红色顶纤柱推挤监测光纤向凹形压纤盖方向移动并最终与压纤盖互相吻合,这时夹持在顶纤柱与压纤盖间的监测光纤就会形成一个半径等同于吻合槽道大小的物理弯曲,同时产生附加弯曲损耗,而这个弯曲损耗维护人员是可利用光时域反射仪(OTDR) 在光端站测试出来的。